ACS Medicinal Chemistry Letters

Letter

Truncated Orexin Peptides: Structure–Activity Relationship Studies

Nadezhda A. German, Ann M. Decker, Brian P. Gilmour, Brian F. Thomas, and Yanan Zhang*

Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States

(5) Supporting Information

ABSTRACT: Orexin receptors are involved in many processes including energy homeostasis, wake/sleep cycle, metabolism, and reward. Development of potent and selective ligands is an essential step for defining the mechanism(s) underlying such critical processes. The goal of this study was

to further investigate the structure–activity relationships of these peptides and to identify the truncated form of the orexin peptides active at OX_1 . Truncation studies have led to OXA(17-33) as the shortest active peptide known to date with a 23-fold selectivity for OX_1 over OX_2 . Alanine, D-amino acid, and proline scans have highlighted the particular importance of Tyr^{17} , Leu²⁰, Asn²⁵, and His²⁶ for agonist properties of OXA(17-33). The conformation of the C-terminus might also be a defining factor in agonist activity and selectivity of the orexin peptides for the OX_1 receptor.

KEYWORDS: Orexin, peptide, structure-activity relationship

rexin A and B (or hypocretin-1 and -2) are two neuropeptides discovered in 1998.^{1,2} Both peptides bind to two G protein-coupled receptors (GPCRs), orexin 1 (OX_1) and orexin 2 (OX_2) . OX_1 selectively binds orexin A, whereas OX_2 is activated by both peptides nonselectively.² The orexin system has been shown to play an important role in energy homeostasis,³ wake/sleep cycle,⁴ metabolism,⁵ modulating nonsleep energy consumption,⁶ and reward processing. Therefore, these receptors have been implicated as potential targets for treatment of a variety of conditions such as insomnia, narcolepsy, obesity, and drug addiction.^{8–10} Additionally, OX1 and OX2 receptors may modulate different physiological responses as suggested by their different distribution patterns in brain tissues.^{2,11,12} Although a list of subtype selective or dual orexin antagonists have been reported,^{13–15} progress on agonist development has been limited, and no small molecule agonists have been reported to date. Orexin A and B have been widely used for research purposes, but they display minimal subtype selectivity. Hence, identification of peptide analogues with increased selectivity is needed to further elucidate the respective functions of these receptors.

Orexin A consists of 33 amino acids with C-terminal amidation, an N-terminal pyrolgutamyl residue, and two intrachain disulfide bonds [Cys⁶-Cys¹² and Cys⁷-Cys¹⁴]. Orexin B is a 28 amino acid linear peptide with an amidated C-terminus. While orexin A has a completely conserved sequence among several mammalian species, human orexin B has variations at two amino acid residues compared to the rodent sequence.¹ High homology is present at the C-termini of orexin A and B, whereas the N-termini are more divergent in structure (11% homology),¹⁶ suggesting that the C-terminal region might be important for activity.

Structure–activity relationship (SAR) studies on orexin A and B have been performed by several groups. The importance of the C-terminus for agonism has been confirmed.^{16–19} Several

Figure 1. Orexin A and B peptide sequence. Q* corresponds to the pyroglutamoyl group.

key amino acids in human orexin A and B required for binding to OX_1 and OX_2 have also been identified. Truncation studies have identified OXA (15–33) and OXB (10–28) as the shortest active peptides at OX_1 and OX_2 receptors, respectively.^{17,19} The two-point substituted analogue of orexin B, [Ala¹¹, D-Leu¹⁵]orexin B (SB-668875-DM), was reported to have 400-fold selectivity for OX_2 over $OX_1^{20,21}$ although the selectivity was much weaker when studied by another group.²² Truncation of orexin B followed by one-point mutation studies resulted in orexin B (6–28) analogues with good selectivity for OX_2 (>1000 fold).¹⁷ Among reported orexin A analogues, orexin A (2–33) is the only one that shows modest selectivity for OX_1 (3-fold).¹⁷ We report herein our work on further studying the SAR of the orexin peptides in an effort to understand the structural requirements for peptides with minimal sequences that are selective for the OX_1 receptor.

All target peptides were synthesized following conventional solid-phase technique using Fmoc/tBu strategy on an Apptec Focus XC peptide synthesizer (Supporting Information). Activity of the target compounds at the human OX₁ and OX₂ receptors was determined utilizing CHO-RD-HGA16 cells (Molecular Devices) engineered to stably express either the human OX₁ or the human OX₂ receptor. Test compound EC₅₀ values were determined by running 8-point half-log concentration response curves.

 Received:
 August 29, 2013

 Accepted:
 October 15, 2013

 Published:
 October 15, 2013

ACS Publications © 2013 American Chemical Society

ACS Medicinal Chemistry Letters

As the first step of the SAR studies, truncated analogues of both orexin A and B were prepared and tested in our assays (Table 1). Since the C terminus has been shown to be crucial

Table 1. Biological Activity of Orexin A and B and Their Truncates

peptides	$EC_{50} (nM)^a OX_1$	$EC_{50} (nM)^a OX_2$	OX_2/OX_1
orexin A	0.22 ± 0.06	1.07 ± 0.3	4.9
orexin A (15–33)	64.4 ± 6.9	976 ^b	15
orexin A (17–33)	8.29 ± 1.1	187 ^b	23
orexin A(19–33)	1380 ± 510	947 ± 300	0.7
orexin A(21–33)	<50% ^c		
orexin B (10–28)	144 ± 35	99.3 ± 27	0.7
orexin B (12–28)	<50% ^c	1040 ± 300	

^{*a*}Values are the mean \pm SEM of at least three independent experiments in duplicate. ^{*b*}Values are the mean of two independent experiments in duplicate. ^{*c*}Percentage of <50% means activity at 10 μ M was less than 50% of the control orexin A $E_{\rm max}$.

for activity,^{16–19} truncation was carried out at the N terminus. The truncation of orexin A resulted in several analogues having agonist activity at the OX_1 receptor (Table 1). OXA (19–33) displayed modest potency (EC₅₀ = 1380 nM) at the OX₁ receptor. Two peptides OXA (15-33) with EC₅₀ of 64 nM and OXA (17-33) with $EC_{50} = 8.29$ nM displayed the highest potency among all analogues. In contrast to previous reports, orexin A (15-33) showed modest selectivity for the OX₁ receptor (~15-fold) in our hands. OXA (17-33) had slightly higher selectivity for OX_1 (~23-fold), which represents the shortest analogue with OX1 selectivity to date. Although the reason for this discrepancy is unclear, it has been proposed that orexin agonist discrimination is dependent on the expression system.²³ Indeed, the EC₅₀ of orexin A and B varies across several assay systems.^{17,19,20} Truncation on orexin B resulted in OXB (10-28) that showed activity at both receptors, confirming the previous notion that at least 19 amino acids are required for orexins to retain activity at orexin receptors.17,19

Since orexin A is capped with a pyroglutamoyl group at the N-terminus and acylation may be important for activity, as is observed with Ghrelin,²⁴ the corresponding N-acyl analogues were also synthesized (Supporting Information). No significant effect on agonist properties of truncated peptides was detected with the presence of the N-terminus "cap".

OXA (17-33) was chosen for further SAR studies because of its good potency and OX1 preference. An alanine scan was first performed to determine the contributions of the side chains to the overall activity (Table 2). Substitution of the first six Nterminal amino acids (17-22) partially retained the agonist activity at the OX₁ receptor, except for [Ala²⁰] (EC₅₀ > 3 μ M), whose analogue with the acetyl cap had no OX1 activity at up to 10 μ M. [Ala¹⁸] substitution showed the least effect on activity (EC₅₀ 79 nM). Alanine substitution at the 24-28 positions resulted in a more significant drop in activity, whereas changes in the last 5 amino acids (C-terminal) led to a complete loss in activity, confirming that modifications on the C-terminal region are not tolerated. A similar trend is present at the OX₂ receptor. The preference for the OX₁ receptor was generally maintained with substitution at 17-22 positions but was abolished with substitution at the 24-26 positions. Acylation on the Nterminus displayed minimal effects on agonist activity in this series of peptides (see Supporting Information).

Table 2. Biological Activity of Alanine Substituted OXA (17–33)

peptides	$EC_{50} (nM)^a OX_1$	$EC_{50} (nM)^b$ OX ₂	OX_2/OX_1
orexin A (17–33)	8.29 ± 1.1	187	23
$[Ala^{17}]OXA (17-33)$	1910 ± 620	4820	2.5
[Ala ¹⁸]OXA (17-33)	78.9 ± 22	439	5.6
[Ala ¹⁹]OXA (17-33)	212 ± 57	1890 ± 610^{a}	8.9
[Ala ²⁰]OXA (17-33)	3230 ± 1080	7850	2.4
[Ala ²¹]OXA (17-33)	493 ± 49	1910	3.9
[Ala ²²]OXA (17-33)	422 ± 55	1440	3.4
[Ala ²⁴]OXA (17-33)	1040 ± 300	1360	1.3
[Ala ²⁵]OXA (17-33)	3070 ± 1180	2320	0.8
[Ala ²⁶]OXA (17–33)	3060 ± 940	1580	0.5
[Ala ²⁹]OXA (17-33)	<50% ^c	<50% ^c	
[Ala ³⁰]OXA (17–33)	inactive at 10 μM^{b}	inactive at 10 μM	
[Ala ³¹]OXA (17–33)	inactive at 10 μM^{b}	inactive at 10 μM	
[Ala ³²]OXA (17-33)	<50% ^{b,c}	<50% ^c	
[Ala ³³]OXA (17–33)	<50% ^{b,c}	inactive at 10 μM	

"Values are the mean \pm SEM of at least three independent experiments in duplicate. "Values are the mean of at least two independent experiments in duplicate. "Perecentage of <50% means activity at 10 μ M was less than 50% of the control orexin A $E_{\rm max}$."

The effect of side-chain chirality on the activity was examined by a D-amino acid scan on OXA (17–33) (Table 3). Similarly, changes on the C-terminal side of the peptide (28–33) led to a complete loss of activity. Changes in the remaining positions (17–27) revealed that [D-Glu¹⁸], [D-Leu¹⁹], and [D-Leu²⁰] analogues retained some of the activity, whereas all other analogues had noticeable decreases in agonist potency. Interestingly, substitution to D-amino acids at positions 19–

Table 3. Biological Activity of D-Amino Acid Substituted OXA (17–33)

peptides	$EC_{50} (nM)^a OX_1$	$EC_{50} (nM)^b$ OX ₂	OX_2/OX_1
[D-Tyr ¹⁷]OXA (17–33)	1360 ± 540^{b}	3220	2.4
[D-Glu ¹⁸]OXA (17–33)	739 ± 190^{b}	2140	2.9
[D-Leu ¹⁹]OXA (17–33)	526 ± 100	263	0.5
[D-Leu ²⁰]OXA (17–33)	535 ± 110	156	0.3
[D-His ²¹]OXA (17–33)	1560 ± 310	610	0.4
[D-Ala ²³]OXA (17–33)	3070 ± 970	1920	0.6
$[D-Asn^{25}]OXA (17-33)$	inactive at 10 μM^{b}	<50% ^c	
[D-His ²⁶]OXA (17–33)	5700 ± 3420	1760	0.3
[D-Ala ²⁷]OXA (17–33)	1900 ± 530	1250	0.7
[d-Ala ²⁸]OXA (17–33)	inactive at 10 μM	<50% ^c	
[D-Ile ³⁰]OXA (17–33)	inactive at 10 μM^{ν}	inactive at 10 μM	
[D-Leu ³¹]OXA (17–33)	inactive at 10 μM^{b}	<50% ^c	
[D-Thr ³²]OXA (17–33)	inactive at 10 μM^{ν}	inactive at 10 μM	
[D-Leu ³³]OXA (17–33)	inactive at 10 μM^{b}	inactive at 10 µM	

^{*a*}Values are the mean of at least three independent experiments in duplicate. ^{*b*}Values are the mean of two independent experiments in duplicate. ^{*c*}Percentage of <50% means activity at 10 μ M was less than 50% of the control orexin A $E_{\rm max}$.

27 seemed to reverse the binding preference to favor OX₂. For example, [D-Leu²⁰] orexin (17–33) analogue had no change in activity at OX₂ and a 64-fold drop in activity at OX₁; [D-His²⁶] OXA (17–33) had 9-fold reduction in activity at OX₂ and almost 700-fold drop in activity at OX₁. These results suggest a more pronounced impact of chain orientation on orexin receptor binding in this region. [Tyr¹⁷] and [Glu¹⁸] retained slight selectivity for OX₁, although agonist activity of both analogues significantly decreased.

The effect of more dramatic changes on secondary structure of peptides was investigated using proline scans of OXA (17–33). Given that modification in the C-terminus resulted in total loss of activity in previous scans, only the first half from the N-terminus (17–22) was investigated. The analogues resulting from proline substitution at 17–19 position retained some of the original activity, with [Pro¹⁸] OXA (17–33) being the least affected by change (Table 4). A more significant drop in activity was observed for analogues at 20–22 positions. Selectivity of OX₁ was slightly maintained or abolished in this series.

Table 4. Biological Activity of Proline Substituted OXA(17-33)

peptides	$\frac{\mathrm{EC}_{50}\ (\mathrm{nM})^{a}}{\mathrm{OX}_{1}}$	$\begin{array}{c} \mathrm{EC}_{50} \ (\mathrm{nM})^{b} \\ \mathrm{OX}_{2} \end{array}$	OX_2/OX_1	
[Pro ¹⁷]OXA (17-33)	1370 ± 140	3250	2.4	
[Pro ¹⁸]OXA (17-33)	143 ± 16	729	5.1	
[Pro ¹⁹]OXA (17-33)	865 ± 350	1010	1.2	
[Pro ²⁰]OXA (17-33)	1130 ± 450	1610	1.4	
[Pro ²¹]OXA (17–33)	1200 ± 360	1990	1.7	
[Pro ²²]OXA (17-33)	2480 ± 1125	2180	0.9	
^{<i>a</i>} Values are the mean \pm SEM of at least three independent experiments in duplicate. ^{<i>b</i>} Values are the mean of two independent experiments in duplicate.				

NMR and computational studies performed on orexin A (in aqueous²⁵ and in membrane mimetic micellar solutions²⁶) identified a highly conserved hydrophobic region on the Cterminus. This region contains two α -helices that are connected by a short linker.^{16,25} Similarly, solution structure of orexin B (in aqueous²⁷ and in micellar solution²⁸) also shows two α helices at similar positions. These α -helices seem to differ in their length, the position of the loops, and their relative orientation between orexin A and B. The observed selectivity of OX1 toward orexin A was suggested to be due to specific recognition of the overall peptide conformation, especially the hydrophobic side chain in the C-terminal region of the receptor.¹⁶ In our study, two residues, His²¹ and Gly,²² were shown to be of moderate importance in the alanine scan; however, their proline analogues had more pronounced reduction in potency, especially at OX1. These two residues and Asn²⁵ are bordering the two helices and the linker, according to Kim et al., who suggested the helices to be Cys¹⁴-His²¹ and Asn²⁵-Leu^{31,25} and Takai et al., who proposed Leu¹⁶-Ala²³ and Asn²⁵-Thr^{32,16} Considering their close proximity to the linker our results may indicate that these three residues are important for orientation of the two α -helices.¹⁶ Since OX₂ has lesser recognition requirements, the effect of these mutations on activity of corresponding peptides was less pronounced.

In the proposed orexin A structure, the residues that were deemed important for potency in truncated peptide OXA (15–33) (Leu¹⁶, Leu¹⁹, Leu²⁰, His²⁶, Gly²⁹, Ile³⁰, Leu³¹, Thr³², and Leu³³) seemed to exist on one side of orexin A, forming a

hydrophobic surface.^{16,25} This surface might also be important in binding to the cell membrane.²⁶ Residues that were less important (Arg¹⁵, Tyr¹⁷, Glu¹⁸, His²¹, Gly²², Gly²⁴, and Asn²⁵) formed a hydrophilic surface on orexin A, which were thought to play a minimal role in potency. In our study, alanine and proline scans of OXA (17–33) have confirmed the importance of the hydrophobic surface residues Leu²⁰ and His²⁶, together with C-terminal residues 29–33. Leu¹⁸ showed no significant contribution to OXA (17–33) binding to OX₁, agreeing with an earlier report on other truncated orexin A analogues.¹⁶ Interestingly, hydrophilic surface residues Tyr¹⁷ and Asn²⁵ were also shown to be important for potency in our study.

It was previously suggested that OX_1 had more strict recognition requirements than OX_2 in binding endogenous ligands and their analogues.¹⁷ The potency of our truncated orexin A analogues showed more dramatic change in response at OX_1 for all performed mutations. Both OXA (15–33) and OXA (17–33) showed some selectivity for OX_1 in our hands (15- and 23-fold, respectively). Although mutations at Tyr^{17} , one of the key amino acid residues, led to dramatically reduced potency at both receptors, the preference for OX_1 was preserved. Interestingly, *D*-amino acid substitution at Leu²⁰, His²¹, and His²⁶ had not only abolished preference to OX_1 , but seemed to reverse it. Together, these results confirm that the binding pocket on OX_1 might have more specific interactions with ligands than that on OX_2 .

In summary, truncated OXA (17-33) showed preferential agonist activity at OX₁ in our study and is the shortest peptide with such selectivity. Given its shorter sequence and higher selectivity toward OX1, OXA (17-33) may serve as an improved biological probe of the OX1 receptor function. During single amino acid mutagenesis, OXA (17-33) seems to maintain structural requirements similar to those reported for orexin A and OXA (15–33). Our data suggest that Tyr^{17} , Leu²⁰, Asn²⁵, and His²⁶ play a key role in interaction of OXA (17-33)with OX1, whereas His²¹ and Gly²² might be important in the orientation of its two α -helices. Also in the majority of the active analogues studied to date, inversion of configuration at positions 19-27 has resulted in dramatic drops in potency at OX₁, whereas potency at OX₂ changed moderately. Finally, our results on OXA (17-33) suggest that its spatial conformation might be similar to that of human orexin A peptide and is important for binding preference of OX₁.

ASSOCIATED CONTENT

S Supporting Information

Peptide synthesis, calcium assays, HPLC analysis of target peptides, and agonist activity of capped peptides. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*(Y.Z.) E-mail: yzhang@rti.org. Tel: 919-541-1235. Fax: 919-541-6499.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACS Medicinal Chemistry Letters

ACKNOWLEDGMENTS

This work was support by National Institute of Health/ National Institute on Drug Abuse grant DA032837 and Research Triangle Institute. We are grateful for the help from Drs. Scott Runyon and Yanyan "Jasmine" Zhang in peptide synthesis. We thank Tiffany Langston, Allyson Smith, Keith Warner, and Dr. Elaine Gay for technical assistance.

ABBREVIATIONS

 OX_1 , orexin 1 receptor; OX_2 , orexin 2 receptor; OXA, orexin A; GPCR, G protein-coupled receptor; SAR, structure-activity relationship; F-moc, Fluorenylmethyloxycarbonyl; tBu, *t*-butyl; HPLC, high performance liquid chromatography

REFERENCES

(1) de Lecea, L.; Kilduff, T. S.; Peyron, C.; Gao, X.; Foye, P. E.; Danielson, P. E.; Fukuhara, C.; Battenberg, E. L.; Gautvik, V. T.; Bartlett, F. S., II; Frankel, W. N.; van den Pol, A. N.; Bloom, F. E.; Gautvik, K. M.; Sutcliffe, J. G. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. *Proc. Natl. Acad. Sci. U.S.A.* **1998**, *95*, 322–327.

(2) Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R. M.; Tanaka, H.; Williams, S. C.; Richardson, J. A.; Kozlowski, G. P.; Wilson, S.; Arch, J. R.; Buckingham, R. E.; Haynes, A. C.; Carr, S. A.; Annan, R. S.; McNulty, D. E.; Liu, W. S.; Terrett, J. A.; Elshourbagy, N. A.; Bergsma, D. J.; Yanagisawa, M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. *Cell* **1998**, *92*, 573–585.

(3) Sakurai, T. Roles of orexins and orexin receptors in central regulation of feeding behavior and energy homeostasis. *CNS Neurol. Disord.: Drug Targets* **2006**, *5*, 313–325.

(4) Chemelli, R. M.; Willie, J. T.; Sinton, C. M.; Elmquist, J. K.; Scammell, T.; Lee, C.; Richardson, J. A.; Williams, S. C.; Xiong, Y.; Kisanuki, Y.; Fitch, T. E.; Nakazato, M.; Hammer, R. E.; Saper, C. B.; Yanagisawa, M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. *Cell* **1999**, *98*, 437–451.

(5) Lubkin, M.; Stricker-Krongrad, A. Independent feeding and metabolic actions of orexins in mice. *Biochem. Biophys. Res. Commun.* **1998**, 253, 241–245.

(6) Teske, J. A.; Billington, C. J.; Kotz, C. M. Hypocretin/orexin and energy expenditure. *Acta Physiol.* **2010**, *198*, 303–312.

(7) Sharf, R.; Sarhan, M.; Dileone, R. J. Role of orexin/hypocretin in dependence and addiction. *Brain Res.* **2010**, *1314*, 130–138.

(8) Kukkonen, J. P. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. *Am. J. Physiol., Cell Physiol.* 2013, 304, C2–32.

(9) Scammell, T. E.; Winrow, C. J. Orexin receptors: pharmacology and therapeutic opportunities. *Annu. Rev. Pharmacol. Toxicol.* 2011, *51*, 243–266.

(10) Gotter, A. L.; Roecker, A. J.; Hargreaves, R.; Coleman, P. J.; Winrow, C. J.; Renger, J. J. Orexin receptors as therapeutic drug targets. *Prog. Brain Res.* **2012**, *198*, 163–188.

(11) Trivedi, P.; Yu, H.; MacNeil, D. J.; Van der Ploeg, L. H.; Guan, X. M. Distribution of orexin receptor mRNA in the rat brain. *FEBS Lett.* **1998**, 438, 71–75.

(12) Marcus, J. N.; Aschkenasi, C. J.; Lee, C. E.; Chemelli, R. M.; Saper, C. B.; Yanagisawa, M.; Elmquist, J. K. Differential expression of orexin receptors 1 and 2 in the rat brain. *J. Comp. Neurol.* **2001**, 435, 6–25.

(13) Roecker, A. J.; Coleman, P. J. Orexin receptor antagonists: medicinal chemistry and therapeutic potential. *Curr. Top. Med. Chem.* **2008**, *8*, 977–987.

(14) Gatfield, J.; Brisbare-Roch, C.; Jenck, F.; Boss, C. Orexin receptor antagonists: a new concept in CNS disorders? *ChemMed-Chem* **2010**, *5*, 1197–1214.

(15) Boss, C.; Brisbare-Roch, C.; Jenck, F. Biomedical application of orexin/hypocretin receptor ligands in neuroscience. *J. Med. Chem.* **2009**, 52, 891–903.

(16) Takai, T.; Takaya, T.; Nakano, M.; Akutsu, H.; Nakagawa, A.; Aimoto, S.; Nagai, K.; Ikegami, T. Orexin-A is composed of a highly conserved C-terminal and a specific, hydrophilic N-terminal region, revealing the structural basis of specific recognition by the orexin-1 receptor. J. Pept. Sci. **2006**, *12*, 443–454.

(17) Lang, M.; Soll, R. M.; Durrenberger, F.; Dautzenberg, F. M.; Beck-Sickinger, A. G. Structure–activity studies of orexin a and orexin B at the human orexin 1 and orexin 2 receptors led to orexin 2 receptor selective and orexin 1 receptor preferring ligands. *J. Med. Chem.* **2004**, *47*, 1153–1160.

(18) Ammoun, S.; Holmqvist, T.; Shariatmadari, R.; Oonk, H. B.; Detheux, M.; Parmentier, M.; Akerman, K. E.; Kukkonen, J. P. Distinct recognition of OX1 and OX2 receptors by orexin peptides. *J. Pharmacol. Exp. Ther.* **2003**, 305, 507–514.

(19) Darker, J. G.; Porter, R. A.; Eggleston, D. S.; Smart, D.; Brough, S. J.; Sabido-David, C.; Jerman, J. C. Structure-activity analysis of truncated orexin-A analogues at the orexin-1 receptor. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 737–740.

(20) Asahi, S.; Egashira, S.; Matsuda, M.; Iwaasa, H.; Kanatani, A.; Ohkubo, M.; Ihara, M.; Morishima, H. Development of an orexin-2 receptor selective agonist, [Ala(11), D-Leu(15)]orexin-B. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 111–113.

(21) Soffin, E. M.; Gill, C. H.; Brough, S. J.; Jerman, J. C.; Davies, C. H. Pharmacological characterisation of the orexin receptor subtype mediating postsynaptic excitation in the rat dorsal raphe nucleus. *Neuropharmacology* **2004**, *46*, 1168–1176.

(22) Putula, J.; Turunen, P. M.; Johansson, L.; Nasman, J.; Ra, R.; Korhonen, L.; Kukkonen, J. P. Orexin/hypocretin receptor chimaeras reveal structural features important for orexin peptide distinction. *FEBS Lett.* **2011**, *585*, 1368–1374.

(23) Putula, J.; Turunen, P. M.; Jantti, M. H.; Ekholm, M. E.; Kukkonen, J. P. Agonist ligand discrimination by the two orexin receptors depends on the expression system. *Neurosci. Lett.* **2011**, 494, 57–60.

(24) Hosoda, H.; Kojima, M.; Matsuo, H.; Kangawa, K. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. *Biochem. Biophys. Res. Commun.* **2000**, *279*, 909–913.

(25) Kim, H. Y.; Hong, E.; Kim, J. I.; Lee, W. Solution structure of human orexin-A: regulator of appetite and wakefulness. *J. Biochem. Mol. Biol.* **2004**, *37*, 565–573.

(26) Miskolzie, M.; Kotovych, G. The NMR-derived conformation of orexin-A: an orphan G-protein coupled receptor agonist involved in appetite regulation and sleep. *J. Biomol. Struct. Dyn.* **2003**, *21*, 201–210.

(27) Lee, J. H.; Bang, E.; Chae, K. J.; Kim, J. Y.; Lee, D. W.; Lee, W. Solution structure of a new hypothalamic neuropeptide, human hypocretin-2/orexin-B. *Eur. J. Biochem.* **1999**, *266*, 831–839.

(28) Miskolzie, M.; Lucyk, S.; Kotovych, G. NMR conformational studies of micelle-bound orexin-B: a neuropeptide involved in the sleep/awake cycle and feeding regulation. *J. Biomol. Struct. Dyn.* **2003**, *21*, 341–351.